Additive Manufacturing Technology and Trends

MCA Session Topic: CAM for CAD and MCA Ideation

7/20/23

Instructor:

1. Alex Raymond Renner: <u>arenner@iastate.edu</u>

Design for Additive Manufacturing (DFAM)?

- Don't print boxes or threads
- Use a printer to make it's own parts
- Combine parts that need to function within your design
- If assembled with production part, makeprinted part tolerance higher

Design for Additive Manufacturing (DFAM)?

- Can the size be modified to make it function nearly as well as traditional manufacturing method?
- Is 3D printing the only way to manufacture the part?
- Script the model to customize & ensure fit/ function: <u>OpenSCAD</u>

Design for Additive Manufacturing (DFAM)?

- All 300,000 were 100% inspected using nondestructive evaluation.
 - How many failed to print?
 - How many failed inspection?
- Nobody, has, can, or ever
 will print 2 parts that are
 exactly the same

MCA Session 4, In-Class Activity #1

- If/when you can't apply DFAM
- 3D print preparation software for DFAM
- Open benchy in Cura
 - Machines (how to setup, speed limits, & why you'll use VRAC's)
 - Extruder(s) material (nozzle and bed temp)
 - Settings (infill type and %, outlines, support type
- Export to 3D printer (local vs. remote)

Part Orientation

- Is there a best orientation?
- Software algorithms and experienced users can optimize choose "optimal" orientation".
- How do we know if model is bad and/or when 2 disciplines are collaborating?
- Who knows (e.g., designer, 3D printing person, medical doctor)?

Print Preview Uses

- Tell you how long print will take to print and how much material will be used
- Where supports are located with respect to part (may help orient the part)
- Print type (and corresponding print speed) for the part on a single layer (due to computational expense)
- If connection to printer required:
 to make system proprietary or to
 get real-time print info

Print Previews Do Not Help Choose Settings

- If we had the Goldilocks Evaluation Matrix (GEM) it would show you the tradeoffs between print settings and part quality
- Without GEM we have to print parts, try modifying settings, and print again
- "Virtual Iterations" could be performed 1000s before printing 1 part

Per Layer Thickness	Increase Speed	Decrease Speed
Increase Extruder Temp	Yes or No?	Yes or No?
Decrease Extruder Temp	Yes or No?	Yes or No?

3D Printer Software Settings

- Print Head Speed
- Extruder Set Temperature
- Layer Thickness

Print Preview

- Build Time Estimate
- Graphs Showing Temperature Sensor Values
- Print Material Shapes

Novice User Questions

- Can I reduce print time?
- Should I use default temperatur e settings?
- Will the part look smoother when printed?

Success ful Print

Teach Process So You Can Print Parts Better

- Alex is the "Chief Operating Officer" (-VRAC MakerBot Training Manual)
- "VRAC Maker"
- "Trained Personnel"
- Print failures are priceless

Limited Experience Still Print Cool Stuff

- Kate trained by Holly who was trained by Alex.
- Bottom up approach
 of learning the process
 effects at the road level
 helped learn how to
 make decisions about
 print settings.

MCA Session 4, In-Class Activity #2

- Print Benchy (each intern)
- Terminology / component labels: describe in your own words
- Common component terminology to be added after the in-class activity
- Focus on function what does each component do to help 3D print parts?

Preview vs. Simulate

- Print Preview showslayers of ideally shaped3D printed segments
- Simulation uses the
 machines instructions
 and provides inter and
 intra-layer visualization
 of the whole process

Virtual Additive Manufacturing Visualization Investigation and Simulation (VAMVIS)

- Alex Raymond Renner's PhD
 Research application
- Desktop (Qt), C6, and HMD
- Why the name:
- Using VR for AM
- 0.4mm nozzle (half thickness of piece of paper) can be visualized in C6 at much larger scale an investigated by more than one person at a time

VAMVIS's Thermal Process Simulation

- Any combination of3D printer, software,and hardware
- Really???? How???
- Collect the information
 in the table for every
 print move from G Code

Symbol	Value	Unit	
T _s	230 25 0.3 90 90 40	°C °C mm mm/s mm/s	
T _∞			
L			
S_i S_s			
			S _o
S_f			30
	T_{s} T_{∞}	$T_{\rm s}$ 230 $T_{\rm co}$ 25 $T_{\rm co}$ 25 $T_{\rm co}$ 90 $S_{\rm s}$ 90 $S_{\rm co}$ 40	

VAMVIS's Thermal Process Simulation

- Do some math for the roads' size
 (calculate volume/surface area)
- Account for print head speed changes and update frequency of the simulation app
- Include the roads' material
 properties in a fancy heat
 transfer analysis model (Lumped
 Capacitance assumptions)

Property	Symbol	Value	Unit
Convective Heat Transfer	h	0.000058	W
Coefficient			mm ² K
Characteristic Length	$L_{\mathcal{C}}$	$\frac{V}{A_{\mathcal{S}}}$	mm
Biot Number	B_i	$\frac{h(L_C)}{k}$	N/A
Alpha	α	$\frac{k}{\rho C}$	mm ² /s
Time	t	$\frac{1}{60}$	s
Fourier	Fo	$\frac{\alpha t}{(L_C)^2}$	N/A
Extruding Temperature	T_i	$T_{\infty} + (T_{\scriptscriptstyle S} - T_{\infty})e^{(-Bi*Fo)}$	°C
Extruded Temperature	T_{i-1}	$T_{\infty} + (T_i - T_{\infty})e^{(-Bi*Fo)}$	°C

MCA Session 4: Download a thing to print Wednesday

