

Efficacy of Fingerprint Modeling Using Structured Light 3D Scanning Beiwen Li, Ph. D, Micah Mundy, Amy Gilhoi, Rebekah Young, Tim Yu

Overview

Our Motivation

- Validate and increase knowledge of the microscopic 3D scanning system by exploring novel applications.
- Determine if structured light 3D scanning can be used for fingerprinting.
- Investigate a potential threat of misusing technologies like 3D scanning and 3D printing for criminal activities.

Figure 1. An SLS system

Structured Light 3D Scanning (SLS)

- SLS uses one camera and one projector (Figure 1).
- Most SLS systems can't capture microscopic details.
- We use a telecentric lens to improve accuracy when scanning microscopic objects [1].

Results

- Fingerprint models were successfully created using 3D scanning and replication pipeline.
- Silicone and PDMS fingerprints were recognized by optical fingerprint scanner (Figure 4). \bullet
- Fingerprint phantoms were capable of matching actual fingerprints (Figure 5).

Figure 4. Images of actual and replica fingerprint scans

SFG Demo	×
nage Preview	
alan	Find same finger! ID = 25, Used:270 ms
NAME OF	Cancel Operate Exit
	Image Manage
	Capture Con Capture Save Image Download Image
	Enroll Con Enroll
	Match Template Database
	0 1 Match Empty
Language	2

Figure 5. A successfully spoofed fingerprint reading

[1]	B. Li
	system
[2]	Oct. 2 C. W.
	Phant
ر د ت	no. 1,
[3]	J. W1 for R
	Peder
F 4 7	Publi
[4]	A. Ka Fabri
	on Co
	10.11

Funded by NSF Grant #2244586

Discussion

Implications

• Potential for contactless fingerprint phantom spoofing with our method.

• Positive applications include better

fingerprinting of atypical fingerprints.

• Spoofing may allow for criminal activity.

Limitations

• When testing PDMS and silicone against an optical scanner, approximate tissue optical properties of the fingerprint "phantom" can affect the clarity of ridge resolution [2].

• Motion artifacts can occur when scanning

Future Work

• Examine potential for detecting spoofed fingerprints using methods such as BSIF [4].

• Test method on a broader demographic range.

References

and S. Zhang, "Flexible calibration method for microscopic structured light m using telecentric lens," Opt. Express, OE, vol. 23, no. 20, pp. 25795–25803, 2015, doi: 10.1364/OE.23.025795. Schultz, J. X. H. Wong, and H.-Z. Yu, "Fabrication of 3D Fingerprint" oms via Unconventional Polycarbonate Molding," Sci. Rep., vol. 8, no. 1, Art. un. 2018, doi: 10.1038/s41598-018-27885-1. n, O. V. Olesen, R. R. Paulsen, and R. Larsen, "Correction of Motion Artifacts eal-Time Structured Light," in Image Analysis, R. R. Paulsen and K. S. rsen, Eds., in Lecture Notes in Computer Science. Cham: Springer International ishing, 2015, pp. 142–151. doi: 10.1007/978-3-319-19665-7_12. attani, Z. Akhtar and G. Foresti, "A Preliminary Study on Identifying ation Material From Fake Fingerprint Images," 2015 IEEE Symposium Series nputational Intelligence, Cape Town, South Africa, 2015, pp. 362-366, doi: 09/SSCI.2015.61.