
Scripting and UI

Jack	Miller	and	Mitchell	Talyat



Day 1 Review

•Game	Engines

•Unity	Interface

• Cameras,	Lights,	and	Objects

• Scripting	in	C#



Enabling and Disabling Components



Activating Game Objects

•Making	a	GameObject	inactive	will	
disable	every	component	and	turn	
off	any	attached	renderers,	
colliders,	rigid	bodies,	scripts,	etc...	

•Any	scripts	that	you	have	attached	
to	the	GameObject	will	no	longer	
have	Update()	called



Getting a Component

•GetComponent<Type>()

•Allows	you	access	to	any	Component	in	the	object

• You	can	access	Parent	and	Children	too



Calling Other Scripts

• Scripts	are	GameComponents,	so	you	can	use	
GetComponent<Type>()or	FindObjectOfType<Type>()	to	obtain	a	
reference	to	other	scripts



Particle Systems

•Uses	a	large	number	of	small	
objects	to	mimic	“fuzzy”	
phenomena

• Fire,	Smoke,	Rain,	Snow,	
Clouds,	etc.



Colliders

•Allows	physical	interaction	
between	objects

• Colliders	react	with	other	
colliders

• Can	also	be	used	for	
selecting	objects



Unity User Interfaces



UI Canvas

• Everything	UI	starts	with	the	Canvas

• Canvas	is	a	GameObject

•All	UI	elements	must	be	children	of	a	
canvas



UI Text

•Whenever	you	need	text

• Text	properties	can	be	set	in	the	Inspector

• Can	be	changed	during	runtime	through	
scripting



UI Image

• Can	be	used	for	almost	anything,	
button,	slider,	etc.

•When	importing	an	image,	you	
must	define	what	type	of	texture	
it	is	(Normal	Map,	Light	Map,	
Sprite)

• For	UI,	we	want	a	Sprite	



UI Button

•Button	is	a	GameObject	that	must	be	a	
child	of	a	canvas

•Many	different	options	for	styling



On Click()

• You	can	hook	up	a	button	to	an	
action	through	the	Inspector

• Chose	your	GameObject

• Choose	your	Component

• Choose	your	Method



Activity

•Using	the	same	scene

• Play	around	with	the	existing	UI

•Add	new	UI	elements	and	functionality



Creating an Executable

•What	if	I	want	to	create	a	standalone	app?

• Let’s	make	an	executable



Creating an Executable

•Add	the	desired	scene

• Select	your	platform

•Build	and	Run!


