Welcome to SolidWorks

Computer Aided Design (CAD)

Part

Assemblies

Drawings

Design Analyses

Finite Element Analysis (FEA)

Topology Optimization

Production Preparation

Computer Aided
Manufacturing
(CAM) Simulation

CAD to XR (AR/VR/MR/Web)

Solid Modeling

o Defined by:

- Boundary representation (B-rep)
 - connected surfaces create an inside and outside of the part
- o Have these properties:
 - Mass
 - Volume
 - Moment of inertia

Constraints

o Defined as a limitation or restriction

Apply constraints to any geometry drawn in Solidworks (under the

discretion of the user)

*Constraints in Solidworks look like this.

Implicit Constraints

Geometric relationships
 implied by the way the
 profile is drawn and
 interpreted by Solidworks

 Note: Solidworks only makes closed profiles, so your profiles must have closure.

More Implicit Constraints

Explicit Constraints

o Defined by the operator

- <u>Dimensional constraints:</u> assigning a specific length to a line, radius to a circle, etc.

- Geometric constraints: specifying the ways in which lines/shapes/features relate to one another

Levels of Constraint

o Fully constrained

- Every element has been completely dimensioned/specified

o Underconstrained

- Not all elements are dimensioned/specified (leaves interpretation up to Solidworks)

o Overconstrained

- Adding a new constraint would conflict with existing constraints (Solidworks won't let another dimension be added)

Example of an Overconstrained Sketch

Driven Dimension: is *driven by* the model *Changing the model > changes this driven dimension value

Driving Dimension: drives the model *Changing this driving dimension changes the model

You can't just define man as "featherless bipeds"! I mean look at this chicken I just plucked! Does this featherless biped look like a man to you?!

THINK PLATO THINK!

One of the basic steps...Extrusion

 Linear Extrusion: starts with closed polygon (profile) drawn on a plane, and then swept along a defined path for a defined length

Extruding a primitive shape allows you to make some of these 3D objects...

Path-based Extrusion

 Sweep: create a profile and define its path to be extruded along

Revolute Extrusions

 Start with a drawn profile and define an axis of rotation about which the profile is rotated for a defined angle.

Path-based and Revolute Extrusions allow you to make some of these 3D objects....

Activity

Complete the Lesson I: Parts tutorial

How to get there: Tutorials>Getting Started>Lesson
 I: Parts

Complete Revolves and Sweeps tutorial

How to get there: Tutorials>Basic
 Techniques>Revolves and Sweeps

***Let me know if you have any questions!

