# Welcome to SolidWorks







## Computer Aided Design (CAD)



## **Design Analyses**



#### Finite Element Analysis (FEA)



Topology Optimization



### **Production Preparation**



Computer Aided Manufacturing (CAM) Simulation IOWA STATE UNIVERSITY

VRAC Visualize • Reason • Analyze • Collaborate



#### CAD to XR (AR/VR/MR/Web)

### Solid Modeling

- Defined by:
  - Boundary representation (B-rep)
    - connected surfaces create an inside and outside of the part
- Have these properties:
  - Mass
  - Volume
  - Moment of inertia



#### Constraints

- Defined as a limitation or restriction
- Apply constraints to any geometry drawn in Solidworks (under the discretion of the user)



#### **Implicit Constraints**

Closure

Tangency

- Geometric relationships implied by the way the profile is drawn and interpreted by SolidWorks
  - Note: SolidWorks only makes closed profiles, so your profiles must have closure.

IOWA STATE UNIVERSITY

Segment Overlap

Parallelism



Endpoint / Line

Overlap

Perpendicularity

## More Implicit Constraints



#### **Explicit Constraints**

• Defined by the operator

another

OWA STATE UNIVERSITY

VRAC Visualize • Reason • Analyze • Collaborate

- Dimensional constraints: assigning a specific length to a line, radius to a circle, etc.
- Geometric constraints: specifying the ways in which lines/shapes/features relate to one





#### Levels of Constraint

- Fully constrained
  - Every element has been completely dimensioned/specified
- Underconstrained
  - Not all elements are dimensioned/specified (leaves interpretation up to Solidworks)
- Overconstrained
  - Adding a new constraint would conflict with existing constraints (Solidworks won't let another dimension be added)





Driven Dimension: is driven by the model \*Changing the model \_\_\_\_\_ changes this driven dimension value

**Driving Dimension**: *drives* the model \*Changing this driving dimension \_\_\_\_\_ changes the model







#### One of the basic steps...Extrusion

• Linear Extrusion: starts with closed polygon (profile) drawn on a plane, and then swept along a defined path for a defined length



### Extruding a primitive shape allows you to make some

#### of these 3D objects...



VRAC Visualize • Reason • Analyze • Collaborate

**IOWA STATE UNIVERSITY** 

#### **Path-based Extrusion**

 Sweep: create a profile and define its path to be extruded along



#### **Revolute Extrusions**

• Start with a drawn profile and define an axis of rotation about which the profile is rotated for a defined angle.







#### Path-based and Revolute Extrusions allow you to make some



VRAC Visualize • Reason • Analyze • Collaborate

### Activity

• Complete the Lesson I: Parts tutorial

- How to get there: Tutorials>Getting
  Started>Lesson 1: Parts
- Complete Revolves and Sweeps tutorial
  - How to get there: Tutorials>Basic Techniques>Revolves and Sweeps

VRAC Visualize • Reason • Analyze • Collaborate

\*\*\*Let me know if you have any questions! IOWA STATE UNIVERSITY

