Additive Manufacturing Technology and Trends

MCA Session Topic: Generalizing Fundamental AM Principles

Instructors: 1. Alex Raymond Renner: <u>arenner@iastate.edu</u> 2. Spencer Rea: <u>sprea27@iastate.edu</u>

4/10/24

Machine Movement Overview

- Machine component movements and material bonding methods must work together
- A machine with specific movements can use different materials
- Material properties are part of designing an AM machine
 - This makes AM fundamentally different than any other manufacturing technology
 - The machine component movement capabilities are always better than the tolerances of the produced part
 - Analogous to designing a Quality Assurance device
- Non-linear relationship between machine movement accuracy and final part accuracy

Simple Definitions for "Complex" AM Systems

Machine Movements

Active vs. Passive

Motors & Gears

Motors & Jets

Mirrors & Motors & Masks

Mirrors & Lasers & Lenses

Materials & Bonding Methods

Plastic Filament, Heat & Pressure

Glue & powder

Resin & UV

Resin & Lasers

Special Powders & Lasers

- Passive systems:
- Support Material moves with part
 - StereoLithography
 - 3D printed (glued powder, Zcorp)
 - Thermo and Multi-Jet Printing
 - Sintering
- Purpose/Use-case priority
 - Aesthetics / Display
 - Feel
 - Function

Platform Movements

- Active systems:
- Support (if needed) created simultaneously with part
 - Deposition: _
 - FFF, FDM, MEMS
 - 3D printed (glued powder, Zcorp)
 - Thermo and Multi-Jet Printing
 - Melting
 - SLM, LENS, EBM
- Purpose/Use-case priority
 - Function
 - Feel
 - Aesthetics / Display

Passive Supports Post-Processing

AM Machine Specifications

Machine Type	Tolerance Range (in.)	Materials	Material & Part Properties	Typical Applications
FFF	0.0000X -> 0.0X	Thermoplastic filament	Varies based on user	Function of Cost
FDM	0.00 -> 0.010	ABS filament	> 60% of other mfg. processes	Fit, and some function
Fused Powder	0.0001 -> 0.005	Thermoplastic & thermoset powders	Poor, requires post- processing	Fit, Form, Function, Communication
SLA	0.0001 -> 0.003	UV cured polymers	Fair	3D shape and
Polyjet	0.00005 -> 0.0005	UV cured polymers, plastics, rubber	Good	Small features, multi-material prototypes
SLS	0.000 -> 0.00	Ceramics, Thermoplastics	Good	Wide variety, based on materia
DMLS	<pre>0.000 -> 0.00 </pre>	Ceramics, Metals	Very Good, semi- porous	Industrial use, complex internal geometric features
SLM, LENS, EBM	> 0.000	Metals	Fully Dense	When it can't be made or repaired in any other way
VRAC Visualize • Reason • Analyze • Collaborate				

S

PolyJet

- Stratasys trade name for multi-jet technology for UV cured photopolymers
- Cannot be used with Thermoplastics which require FDM/FFF processes

Selective Laser Sintering

- Sintering is not melting
 - Laser power dependent on material, 25-100W laser is typical
 - Chamber is heated to below melt temperature of material
 - Nitrogen used to avoid oxidation and/or explosion
- Process Steps:
 - Laser beam directed through use of galvanometric mirrors
 - Un-fused powder serves as passive support structure
 - Supply platform raises and build platform lowers
 - Counter-rotating roller sweeps powder layer from supply
 - One layer thickness of powder ready for sintering
 - Laser sinters a layer
 - Platform moves down after sintering
 - Fresh new powder layer (slow step, compared to laser sintering step)
 - Build Platform raises out of the build chamber

IOWA STATE UNIVERSITY VRAC Visualize • Reason • Analyze • Collaborate

Direct Metal Laser Sintering (DMLS)

- Higher power lasers and chamber temperatures allow direct sintering of metal powders or selective melting
- Lasers 200W +
- Slower scan speed (~ 118 ips) versus 300-40(ips for SLS
- Layer thickness (~0.001"-0.004") $oldsymbol{O}$

DMLS: Materials and Processing

- Polyamide (Nylon)
- Glass filled Polyamide
- Polycarbonate
- Elastomeric materials (rubber like)
- Zircon (ZrSiO4) and Silica (SiO2) sand (coated)
- Metal powders (coated)

Melting: Selective Laser (SLM), Electron Beam (EBM)

- EBM uses electron beam for power and must have conductive materials (lasers can heat others)
- Surface finish in all processes can be a challenge
- Shrinkage and distortion of parts can be a problem
- SLM and EBM can make fully dense parts in metal
- All machines are relatively expensive, EBM and SLM being the most
- Relatively small build envelopes for metal parts

ITURE

- Support (if needed) created simultaneously with part
- Deposition:
 - Laser Engineered Net Shape (LENS)
 - Thermo and Multi-Jet Printing
 - Shape Deposition Manufacturing (SDM)
- Purpose/Use-case priority
 - Function
 - Feel
 - Aesthetics / Display

IOWA STATE UNIVERSITY VRAC Visualize • Reason • Analyze • Collaborate

Hybrid

Thermojet / Multi Jet

- Very high accuracy and good surface finish
- Niche application in jewelry making and dental/medical
- Great for investment casting small parts
- Deposits molten material which solidifies on contact
- Low viscosity molten thermoplastic
- Active support structures using different material
- Low melt temperature, low viscosity
- Intended for investment casting
- Support Material: Natural and Synthetic waxes and Fatty Esters
- Melt temp 120°F-158°F

Shape Deposition Manufacturing (SDM)

- A hybrid method using both
 additive and subtractive
 manufacturing
- Decompose complex shape into
 layers (arbitrary depth) such that
 the part can be made with simple
 operations
- Either machine a cavity and
 deposit material, or deposit
 material and machine the shape

Laser Engineered Net Shape (LENS)

- Uses a focused laser to melt powder and build layers
- Powder is supplied via nozzles around the laser
- Laser, typically Neodymium Yttrium Aluminum Garnet (Nd:YAG) focused with a lens to the build location
- Several nozzles supply metal powders to focal point of laser
- Creates fully dense metal parts and tooling
- Laser power: 500W to 20kW
- Materials
 - Titanium
 - Stainless Steel Inconel
- Can process reactive materials because of inert environment
- LENS process is good for depositing expensive and/or difficult to machine metals

IOWA STATE UNIVERSITY VRAC Visualize • Reason • Analyze • Collaborate

Laser Engineered Net Shape (LENS) cont...

- It is expected that LENS parts/tooling will be machined
- Extra material purposely deposited for this reason
- Substrate may need to be removed
- Post processing alone could exclude LENS from "rapid" category...
- Large use of the LENS process is repair of existing parts
- Cracked/Brokenparts filled with metal in selective regions using LENS process
- Saves costly replacements
- Repair is as strong or stronger than original material

Post Processing, Maintenance, & Quality Assurance

• "I'm melting": water soluble supports

IOWA STATE UNIVERSITY

- "I'm not melting but I am feeling a bit hygroscopic": help control the wet filament population, have your filament stored and adsorbed
- "I think I'm melting": FDM vs. FFF (why your extruder is probably clogged)
- "I wish I was melting": you can't "print metal" but you can sinter it
- "I overcooked it": laser power and angle of incidence in a heated build chamber
- "I wasn't roughhousing": post-processing steps non-AM quality assurance inspection standards applied to AM parts
- "I'm not done with it, but it printed": the often forgotten but beneficial post-processing steps
- "I'm for sure melting": how to make fully dense metal parts using AM processes/techniques

Post Processing: Sintering

- Parts must be extracted from contents of the build chamber, parts must be found in a "block" of material and cleaned
- Cost increases with part complexity and quantity of parts (very little material can be recycled)
- "The Shapeways Factory is a Modern Santa Klaus' FabLab"

That's not a multi-tool! This is a multi-tool

- Self-Propagating Photopolymer Waveguides (SPPW)
 - Lattice-based open-cellular materials -
 - shorter manufacturing time vs. SLA
- Layer-Less AM processes
 - Could be applied to multiple AM system types
 - Borrows concepts from CNC machining -

Emerging AM Methods

In-situ FFF painting

• CMYKW FDM

Emerging AM Methods

