

NAVI: Neuro-Adaptive Vehicle Interface

Johann Chen, Madeleine Korver, Nathan Phillips | Mentors: Jundi Liu Ph.D., Thomas Lenz

Problem Statement

Can situational awareness and workload of a remote operator be improved by:

- Specializing operators' tasks and locations
- Altering the duration and variability of the time between tasks

Background

Robotaxis - Autonomous vehicles without a driver present. These vehicles often encounter edge cases where they fail

Remote Operators - Humans who provide high-level assistance to robotaxis if they encounter edge cases

Problems With Remote Operators

Situation Awareness

- Remote operators are in a remote environment
- Limited time analyzing the robotaxi
- Lack of visual input

Workload

- Too high or too low taskload Passive/Active fatigue
- Complex scenarios
- Time pressure

Remote Operator Queue

Queuing

- Each edge case must be distributed to a fleet of operators
- As robotaxi numbers increase, continuous monitoring of multiple vehicles will be **infeasible**
- Queuing systems will allow fleet and operators to scale arbitrarily
- Servers: remote assistants
- Jobs: robotaxi assistance requests

Algorithm

- How should jobs and servers be **matched**?
- Evenly distribute load by assigning jobs to longest inactive server
- Appropriately load operators through proper staffing levels
- Exploit local knowledge by assigning jobs to operators who know that area
- Develop expertise by allowing operators to specialize in types of task
- Queues well studied, and humans well studied, but no studies about how queues affect humans

Potential Improvements & Hypotheses

- Speed up the gain of situation awareness and task performance
- Manage workload to avoid passive or active fatigue
- Improve **safety** through better decisions

Methods

Testing

- Test was given through our experimental GUI made using Carla and Pygame
- Test was prepared with tasks consisting of different durations between tasks, variability, task types, and location
- Situational awareness and workload was determined by metrics, such as surveys, physiological data, and simulator statistics

Figure 1: Experimental GUI utilizing Pygame and CARLA

Figure 2: CARLA Remote Assistance Flowchart

Participant

Independent Variables

Location - Operator assigned specific location (e.g. city block, neighborhood, busy construction area)

Duration - Amount of time that operator waits between tasks (e.g. an operator waits 15 seconds between tasks)

Variability - Variance of time between tasks (e.g. an operator waits 8 seconds after finishing task 1, but waits 2 seconds after finishing task 2)

Dependent Variables

Hardware - EmotiBit [Heart rate and GSR], Eye tracking glasses

Simulator Statistics - Number of crashes and incorrect decisions, reaction time

Surveys - NASA TLX [Workload and Performance], ASQ [User satisfaction]

Pilot Testing

Goal

- Assess the current Remote Operator Simulator (GUI & tasks)
- Analyze preliminary data

Figure 3: Pilot testing with participant

Takeaways

- Insight into human subjects testing
 - Importance of qualitative feedback
 - Ideas for improvement: tasks, interface
- Importance of note-taking
- Subjects reported a strong learning effect: **training period** needed
- More testing needed for clear results

Pilot Data

- **Two** subjects
- More testing planned for Fall 2025

Figure 5: Pilot testing participant satisfaction

Discussion

- The way tasks are presented affects user perception of performance, workload
 - Queueing strategies can affect performance
- Variability decreased mental demand, performance, and physical demand
- Longer waiting time increased mental demand and perception of performance
- Users were dissatisfied when waiting time was longer.

Future Work

- More testing
- Validation of **generalizability and relevance** of tasks to industry
- Analysis of eye tracking and biometric data for objective workload metrics
- Road map for industry takeaways

